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Bad application programming interfaces 
plague software engineering. How do we  
get things right? 

BY michi henning

After more thAn 25 years as a software engineer,  
I still find myself underestimating the time it 
takes to complete a particular programming task. 
Sometimes, the resulting schedule slip is caused 
by my own shortcomings: as I dig into a problem, I 
simply discover it is a lot more difficult than I initially 
thought, so the problem takes longer to solve—such 
is life as a programmer. Just as often I know exactly 
what I want to achieve and how to achieve it, but it 
still takes far longer than anticipated. When that 
happens, it is usually because I am struggling with 

an application programming interface 
(API) that seems to do its level best to 
throw rocks in my path and make my 
life difficult. What I find telling is that, 
even after 25 years of progress in soft-
ware engineering, this still happens. 
Worse, recent APIs implemented in 
modern programming languages 
make the same mistakes as their 
20-year-old counterparts written in C. 
There seems to be something elusive 
about API design that, despite years of 
progress, we have yet to master.

Good APIs are hard. We all recognize 
a good API when we get to use one. 
Good APIs are a joy to use. They work 
without friction and almost disappear 
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from sight: the right call for a particu-
lar job is available at just the right time, 
can be found and memorized easily, is 
well documented, has an interface that 
is intuitive to use, and deals correctly 
with boundary conditions.

So, why are there so many bad APIs 
around? The prime reason is that, for 
every way to design an API correctly, 
there are usually dozens of ways to 
design it incorrectly. Simply put, it is 
very easy to create a bad API and rather 
difficult to create a good one. Even mi-
nor and quite innocent design flaws 
have a tendency to get magnified out 
of all proportion because APIs are pro-
vided once, but are called many times. 

If a design flaw results in awkward or 
inefficient code, the resulting prob-
lems show up at every point the API 
is called. In addition, separate design 
flaws that in isolation are minor can 
interact with each other in surprising-
ly damaging ways and quickly lead to a 
huge amount of collateral damage.

Bad APIs are easy. Let me show you 
by example how seemingly innocuous 
design choices can have far-reaching 
ramifications. This example, which 
I came across in my day-to-day work, 
nicely illustrates the consequences 
of bad design. (Literally hundreds of 
similar examples can be found in vir-
tually every platform; my intent is not 

to single out .NET in particular.)
Figure 1 shows the interface to the 

.NET socket Select() function in C#. 
The call accepts three lists of sockets 
that are to be monitored: a list of sock-
ets to check for readability, a list of 
sockets to check for writeability, and 
a list of sockets to check for errors. A 
typical use of Select() is in servers 
that accept incoming requests from 
multiple clients; the server calls Se-
lect() in a loop and, in each iteration 
of the loop, deals with whatever sock-
ets are ready before calling Select() 
again. This loop looks something like 
the one shown in Figure 1.

The first observation is that Se-I
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no further explanation of the mean-
ing of this parameter. Of course, the 
question immediately arises, “How 
do I wait indefinitely?” Seeing that 
.NET Select() is just a thin wrapper 
around the underlying Win32 API, the 
caller is likely to assume that a nega-
tive time-out value indicates that Se-
lect() should wait forever. A quick ex-
periment, however, confirms that any 
time-out value equal to or less than 
zero is taken to mean “return immedi-
ately if no socket is ready.” (This prob-
lem has been fixed in the .NET 2.0 ver-
sion of Select().) To wait “forever,” 
the best thing the caller can do is pass 
Int.MaxValue (231-1). That turns out 
to be a little over 35 minutes, which 
is nowhere near “forever.” Moreover, 
how should Select() be used if a time-
out is required that is not infinite, but 
longer than 35 minutes?

When I first came across this prob-
lem, I thought, “Well, this is unfortu-
nate, but not a big deal. I’ll simply write 
a wrapper for Select() that transpar-
ently restarts the call if it times out af-
ter 35 minutes. Then I change all calls 
to Select() in the code to call that 
wrapper instead.”

So, let’s take a look at creating this 
drop-in replacement, called doSe-
lect(), shown in Figure 2. The signa-
ture (prototype) of the call is the same 
as for the normal Select(), but we 
want to ensure that negative time-out 
values cause it to wait forever and that 
it is possible to wait for more than 35 
minutes. Using a granularity of mil-
liseconds for the time-out allows a 
time-out of a little more than 24 days, 
which I will assume is sufficient.

Note the terminating condition of 
the do-loop in the code in Figure 2: it 
is necessary to check the length of all 
three lists because Select() does not 
indicate whether it returned because 
of a time-out or because a socket is 
ready. Moreover, if the caller is not 
interested in using one or two of the 
three lists, it can pass either null or an 
empty list. This forces the code to use 
the awkward test to control the loop 
because, when Select() returns, one 
or two of the three lists may be null (if 
the caller passed null) or may be not 
null, but empty.

The problem here is that there are 
two legal parameter values for one and 
the same thing: both null and an emp-

lect() overwrites its arguments: the 
lists passed into the call are replaced 
with lists containing only those sock-
ets that are ready. As a rule, however, 
the set of sockets to be monitored 
rarely changes, and the most common 
case is that the server passes the same 
lists in each iteration. Because Se-
lect() overwrites its arguments, the 
caller must make a copy of each list 
before passing it to Select(). This is 
inconvenient and does not scale well: 
servers frequently need to monitor 
hundreds of sockets so, on each itera-
tion, the code has to copy the lists be-
fore calling Select(). The cost of do-
ing this is considerable.

A second observation is that, al-
most always, the list of sockets to 
monitor for errors is simply the union 
of the sockets to monitor for reading 
and writing. (It is rare that the caller 
wants to monitor a socket only for er-
ror conditions, but not for readability 
or writeability.) If a server monitors 
100 sockets each for reading and writ-
ing, it ends up copying 300 list ele-
ments on each iteration: 100 each for 
the read, write, and error lists. If the 
sockets monitored for reading are not 
the same as the ones monitored for 
writing, but overlap for some sockets, 
constructing the error list gets harder 
because of the need to avoid placing 
the same socket more than once on 
the error list (or even more inefficient, 
if such duplicates are accepted).

Yet another observation is that Se-
lect() accepts a time-out value in 
microseconds: if no socket becomes 
ready within the specified time-out, 
Select() returns. Note, however, 
that the function has a void return 
type—that is, it does not indicate on 
return whether any sockets are ready. 
To determine whether any sockets are 
ready, the caller must test the length of 
all three lists; no socket is ready only if 
all three lists have zero length. If the 
caller happens to be interested in this 
case, it has to write a rather awkward 
test. Worse, Select() clobbers the 
caller’s arguments if it times out and 
no socket is ready: the caller needs to 
make a copy of the three lists on each 
iteration even if nothing happens!

The documentation for Select() 
in .NET 1.1 states this about the time-
out parameter: “The time to wait for a 
response, in microseconds.” It offers 

it is very easy to 
create a bad aPi 
and rather difficult 
to create a good 
one. even minor 
and quite innocent 
design flaws have 
a tendency to get 
magnified out  
of all proportion 
because aPis are 
provided once,  
but are called  
many times. 
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ty list indicate that the caller is not 
interested in monitoring one of the 
passed lists. In itself, this is not a big 
deal but, if I want to reuse Select() as 
in the preceding code, it turns out to 
be rather inconvenient.

The second part of the code, which 
deals with restarting Select() for 
time-outs greater than 35 minutes, 
also gets rather complex, both be-
cause of the awkward test needed to 
detect whether a time-out has indeed 
occurred and because of the need to 
deal with the case in which millisec-
onds * 1000 does not divide Int.Max-
Value without leaving a remainder.

We are not finished yet: the preced-
ing code still contains comments in 
place of copying the input parameters 
and copying the results back into those 
parameters. One would think that this 
is easy: simply call a Clone() method, 
as one would do in Java. Unlike Java, 
however, .NET’s type Object (which is 
the ultimate base type of all types) does 
not provide a Clone method; instead, 
for a type to be cloneable, it must ex-
plicitly derive from an ICloneable in-
terface. The formal parameter type of 
the lists passed to Select() is IList, 
which is an interface and, therefore, 
abstract: I cannot instantiate things of 
type IList, only things derived from 
IList. The problem is that IList does 
not derive from ICloneable, so there 
is no convenient way to copy an IList 
except by explicitly iterating over the 
list contents and doing the job ele-
ment by element. Similarly, there is 
no method on IList that would al-
low it to be easily overwritten with 
the contents of another list (which is 
necessary to copy the results back into 
the parameters before doSelect() re-
turns). Again, the only way to achieve 
this is to iterate and copy the elements 
one at a time.

Another problem with Select() is 
that it accepts lists of sockets. Lists 
allow the same socket to appear more 
than once in each list, but doing so 
doesn’t make sense: conceptually, 
what is passed are sets of sockets. So, 
why does Select()use lists? The an-
swer is simple: the .NET collection 
classes do not include a set abstrac-
tion. Using IList to model a set is un-
fortunate: it creates a semantic prob-
lem because lists allow duplicates. 
(The behavior of Select() in the pres-

ence of duplicates is anybody’s guess 
because it is not documented; check-
ing against the actual behavior of the 
implementation is not all that useful 
because, in the absence of documen-
tation, the behavior can change with-
out warning.) Using IList to model a 
set is also detrimental in other ways: 
when a connection closes, the serv-
er must remove the corresponding 
socket from its lists. Doing so requires 
the server either to perform a linear 
search (which does not scale well) or 
to maintain the lists in sorted order so 
it can use a split search (which is more 
work). This is a good example of how 
design flaws have a tendency to spread 
and cause collateral damage: an over-
sight in one API causes grief in an un-
related API.

I will spare you the details of how 
to complete the wrapper code. Suffice 
it to say that the supposedly simple 
wrapper I set out to write, by the time 
I had added parameter copying, error 
handling, and a few comments, ran to 
nearly 100 lines of fairly complex code. 
All this because of a few seemingly mi-
nor design flaws:

Select() ˲ overwrites its arguments.
Select() ˲ does not provide a sim-

ple indicator that would allow the 
caller to distinguish a return because 

of a time-out from a return because a 
socket is ready.

Select() ˲ does not allow a time-out 
longer than 35 minutes.

Select() ˲ uses lists instead of sets 
of sockets.

Here is what Select() could look 
like instead:

public static int 
Select(ISet checkRead,  
 ISet checkWrite, 
 Timespan seconds, 
 out ISet readable, 
 out ISet writeable, 
 out ISet error);

With this version, the caller pro-
vides sets to monitor sockets for read-
ing and writing, but no error set: sock-
ets in both the read set and the write 
set are automatically monitored for 
errors. The time-out is provided as a 
Timespan (a type provided by .NET) 
that has resolution down to 100 nano-
seconds, a range of more than 10 
million days, and can be negative (or 
null) to cover the “wait forever” case. 
Instead of overwriting its arguments, 
this version returns the sockets that 
are ready for reading, writing, and have 
encountered an error as separate sets, 
and it returns the number of sockets 

figure 1: the .net socket select() in c++.

public static void Select(List checkRead, List checkWrite,
 List checkError, int microseconds);
// Server code
int timeout = ...;
ArrayList readList = ...; // Sockets to monitor for reading.
ArrayList writeList = ...; // Sockets to monitor for writing.
ArrayList errorList; // Sockets to monitor for errors.

while (!done) {
SocketList readTmp = readList.Clone();
SocketList writeTmp = writeList.Clone();
SocketList errorTmp = readList.Clone();
Select(readTmp, writeTmp, errorTmp, timeout);
for (int i = 0; i < readTmp.Count; ++i) {
  // Deal with each socket that is ready for reading...
}
for (int i = 0; i < writeTmp.Count; ++i) {
  // Deal with each socket that is redy for writing...
}
for (int i = 0; i < errorTmp.Count; ++i) {
  // Deal with each socket that encountered an error...
}
if (readTmp.Count == 0 &&
    writeTmp.Count == 0 &&
    errorTmp.Count == 0) {
      // No sockets are ready...
}

}
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that are ready or zero, in which case 
the call returned because the time-out 
was reached. With this simple change, 
the usability problems disappear and, 
because the caller no longer needs to 
copy the arguments, the code is far 
more efficient as well.

There are many other ways to fix the 
problems with Select() (such as the 
approach used by epoll()). The point 
of this example is not to come up with 
the ultimate version of Select(), but 
to demonstrate how a small number 
of minor oversights can quickly add 
up to create code that is messy, dif-
ficult to maintain, error prone, and 
inefficient. With a slightly better in-
terface to Select(), none of the code I 
outlined here would be necessary, and 
I (and probably many other program-
mers) would have saved considerable 
time and effort.

the cost of Poor aPis
The consequences of poor API design 
are numerous and serious. Poor APIs 
are difficult to program with and often 
require additional code to be written, 
as in the preceding example. If noth-
ing else, this additional code makes 
programs larger and less efficient be-
cause each line of unnecessary code 
increases working set size and reduc-
es CPU cache hits. Moreover, as in the 
preceding example, poor design can 
lead to inherently inefficient code by 
forcing unnecessary data copies. (An-
other popular design flaw—namely, 
throwing exceptions for expected 
outcomes—also causes inefficiencies 
because catching and handling ex-
ceptions is almost always slower than 
testing a return value.)

The effects of poor APIs, however, 
go far beyond inefficient code: poor 
APIs are harder to understand and 
more difficult to work with than good 
ones. In other words, programmers 
take longer to write code against poor 
APIs than against good ones, so poor 
APIs directly lead to increased develop-
ment cost. Poor APIs often require not 
only extra code, but also more complex 
code that provides more places where 
bugs can hide. The cost is increased 
testing effort and increased likelihood 
for bugs to go undetected until the 
software is deployed in the field, when 
the cost of fixing bugs is highest.

Much of software development 

colleagues suffer. If I mis-design a 
function in a widely published library, 
potentially tens of thousands of pro-
grammers suffer.

Of course, end users also suffer. The 
suffering can take many forms, but the 
cumulative cost is invariably high. For 
example, if Microsoft Word contains a 
bug that causes it to crash occasionally 
because of a mis-designed API, thou-
sands or hundreds of thousands of 
end users lose valuable time. Similarly, 
consider the numerous security holes 
in countless applications and system 
software that, ultimately, are caused 
by unsafe I/O and string manipulation 
functions in the standard C library 
(such as scanf() and strcpy()). The 
effects of these poorly designed APIs 
are still with us more than 30 years 
after they were created, and the cumu-
lative cost of the design defects easily 
runs to many billions of dollars.

Perversely, layering of abstractions 
is often used to trivialize the impact 
of a bad API: “It doesn’t matter—we 
can just write a wrapper to hide the 
problems.” This argument could not 
be more wrong because it ignores the 

is about creating abstractions, and 
APIs are the visible interfaces to these 
abstractions. Abstractions reduce 
complexity because they throw away 
irrelevant detail and retain only the 
information that is necessary for a 
particular job. Abstractions do not 
exist in isolation; rather, we layer ab-
stractions on top of each other. Appli-
cation code calls higher-level libraries 
that, in turn, are often implemented 
by calling on the services provided by 
lower-level libraries that, in turn, call 
on the services provided by the system 
call interface of an operating system. 
This hierarchy of abstraction layers 
is an immensely powerful and useful 
concept. Without it, software as we 
know it could not exist because pro-
grammers would be completely over-
whelmed by complexity.

The lower in the abstraction hier-
archy an API defect occurs, the more 
serious are the consequences. If I mis-
design a function in my own code, the 
only person affected is me, because 
I am the only caller of the function. If 
I mis-design a function in one of our 
project libraries, potentially all of my 

figure 2: the doselect() function.

public void doSelect(List checkRead, List checkWrite,
   List checkError, int milliseconds)
{
 ArrayList readCopy; // Copies of the three parameters because
 ArrayList writeCopy; // Select() clobbers them.
 ArrayList errorCopy;
 if (milliseconds <= 0) {
   // Simulate waiting forever.
   do {
       // Make copy of the three lists here...
       Select(readCopy, writeCopy, errorCopy, Int32.MaxValue);
   } while ((readCopy == null || readCopy.Count == 0) &&
            (writeCopy == null || writeCopy.Count == 0) &&
            (errorCopy == null || errorCopy.Count == 0));
 } else {
   // Deal with non-infinite timeouts.
   while ((milliseconds > Int32.MaxValue / 1000) &&
          (readCopy == null || readCopy.Count == 0) &&
          (writeCopy == null || writeCopy.Count == 0) &&
          (errorCopy == null || errorCopy.Count == 0)) {
       // Make a copy of the three lists here...
       Select(readCopy, writeCopy, errorCopy,
              (Int32.MaxValue / 1000) * 1000);
       milliseconds -= Int32.MaxValue / 1000;
   }
 }
 if ((readCopy == null || readCopy.Count == 0) &&
     (writeCopy == null || writeCopy.Count == 0) &&
     (errorCopy == null || errorCopy == 0)) {
       Select(checkRead, checkWrite, checkError, milliseconds*1000);
 }
 // Copy the three lists back into the original parameters here...
}
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cost of doing so. First, even the most 
efficient wrapper adds some cost in 
terms of memory and execution speed 
(and wrappers are often far from effi-
cient). Second, for a widely used API, 
the wrapper will be written thousands 
of times, whereas getting the API right 
in the first place needs to be done only 
once. Third, more often than not, the 
wrapper creates its own set of prob-
lems: the .NET Select() function is 
a wrapper around the underlying C 
function; the .NET version first fails to 
fix the poor interface of the original, 
and then adds its own share of prob-
lems by omitting the return value, get-
ting the time-out wrong, and passing 
lists instead of sets. So, while creating 
a wrapper can help to make bad APIs 
more usable, that does not mean that 
bad APIs do not matter: two wrongs 
don’t make a right, and unnecessary 
wrappers just lead to bloatware.

how to do Better
There are a few guidelines to use when 
designing an API. These are not sure-
fire ways to guarantee success, but 
being aware of these guidelines and 
taking them explicitly into account 
during design makes it much more 
likely that the result will turn out to be 
usable. The list is necessarily incom-
plete—doing the topic justice would 
require a large book. Nevertheless, 
here are a few of my favorite things to 
think about when creating an API.

An API must provide sufficient func-
tionality for the caller to achieve its 
task. This seems obvious: an API that 
provides insufficient functionality is 
not complete. As illustrated by the in-
ability of Select() to wait more than 
35 minutes, however, such insuffi-
ciency can go undetected. It pays to 
go through a checklist of functional-
ity during the design and ask, “Have I 
missed anything?”

An API should be minimal, with-
out imposing undue inconvenience on 
the caller. This guideline simply says 
“smaller is better.” The fewer types, 
functions, and parameters an API 
uses, the easier it is to learn, remem-
ber, and use correctly. This minimal-
ism is important. Many APIs end up 
as a kitchen sink of convenience func-
tions that can be composed of other, 
more fundamental functions. (The 
C++ standard string class with its 

more than 100 member functions is 
an example. After many years of pro-
gramming in C++, I still find myself 
unable to use standard strings for any-
thing nontrivial without consulting 
the manual.) The qualification of this 
guideline, without imposing undue 
inconvenience on the caller, is im-
portant because it draws attention to 
real-world use cases. To design an API 
well, the designer must have an under-
standing of the environment in which 
the API will be used and design to that 
environment. Whether or not to pro-
vide a nonfundamental convenience 
function depends on how often the 
designer anticipates that function 
will be needed. If the function will be 
used frequently, it is worth adding; if 
it is used only occasionally, the added 
complexity is unlikely to be worth the 
rare gain in convenience.

The Unix kernel violates this guide-
line with wait(), waitpid(), wait3(), 
and wait4(). The wait4() function 
is sufficient because it can be used  
to implement the functionality of  
the first three. There is also waitid(), 
which could almost, but not quite, be 
implemented in terms of wait4(). The 
caller has to read the documentation 
for all five functions in order to work 
out which one to use. It would be sim-
pler and easier for the caller to have 
a single combined function instead. 
This is also an example of how con-
cerns about backward compatibility 
erode APIs over time: the API accu-
mulates crud that, eventually, does 
more damage than the good it ever 
did by remaining backward compat-
ible. (And the sordid history of stum-
bling design remains for all the world 
to see.)

APIs cannot be designed without an 
understanding of their context. Consid-
er a class that provides access to a set 
of name value pairs of strings, such as 
environment variables:

class NVPairs {
   public string
     lookup(string name);
   // ...
}

The lookup method provides ac-
cess to the value stored by the named 
variable. Obviously, if a variable with 
the given name is set, the function re-

a big problem with 
aPi documentation 
is that it is usually 
written after the  
aPi is implemented, 
and often written by 
the implementer.
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turns its value. How should the func-
tion behave if the variable is not set? 
There are several options:

Throw a  ˲ VariableNotSet exception.
Return null. ˲

Return the empty string. ˲

Throwing an exception is appro-
priate if the designer anticipates that 
looking for a variable that isn’t there 
is not a common case and likely to 
indicate something that the caller 
would treat as an error. If so, throwing 
an exception is exactly the right thing 
because exceptions force the caller to 
deal with the error. On the other hand, 
the caller may look up a variable and, if 
it is not set, substitute a default value. 
If so, throwing an exception is exactly 
the wrong thing because handling an 
exception breaks the normal flow of 
control and is more difficult than test-
ing for a null or empty return value.

Assuming that we decide not to 
throw an exception if a variable is not 
set, two obvious choices indicate that a 
lookup failed: return null or the empty 
string. Which one is correct? Again, 
the answer depends on the anticipat-
ed use cases. Returning null allows the 
caller to distinguish a variable that is 
not set at all from a variable that is set 
to the empty string, whereas return-
ing the empty string for variables that 
are not set makes it impossible to dis-
tinguish a variable that was never set 
from a variable that was explicitly set 
to the empty string. Returning null is 
necessary if it is deemed important to 
be able to make this distinction; but, 
if the distinction is not important, it is 
better to return the empty string and 
never return null.

General-purpose APIs should be “pol-
icy-free;” special-purpose APIs should be 
“policy-rich.” In the preceding guide-
line, I mentioned that correct design 
of an API depends on its context. This 
leads to a more fundamental design 
issue—namely, that APIs inevitably 
dictate policy: an API performs opti-
mally only if the caller’s use of the API 
is in agreement with the designer’s 
anticipated use cases. Conversely, the 
designer of an API cannot help but 
dictate to the caller a particular set 
of semantics and a particular style of 
programming. It is important for de-
signers to be aware of this: the extent 
to which an API sets policy has pro-
found influence on its usability.

If little is known about the context 
in which an API is going to be used, the 
designer has little choice but to keep 
all options open and allow the API to 
be as widely applicable as possible. In 
the preceding lookup example, this 
calls for returning null for variables 
that are not set, because that choice 
allows the caller to layer its own policy 
on top of the API; with a few extra lines 
of code, the caller can treat lookup of 
a nonexistent variable as a hard er-
ror, substitute a default value, or treat 
unset and empty variables as equiva-
lent. This generality, however, comes 
at a price for those callers who do not 
need the flexibility because it makes it 
harder for the caller to treat lookup of 
a nonexistent variable as an error.

This design tension is present in 
almost every API—the line between 
what should and should not be an er-
ror is very fine, and placing the line 
incorrectly quickly causes major pain. 
The more that is known about the con-
text of an API, the more “fascist” the 
API can become—that is, the more 
policy it can set. Doing so is doing a 
favor to the caller because it catches 
errors that otherwise would go unde-
tected. With careful design of types 
and parameters, errors can often be 
caught at compile time instead of be-
ing delayed until run time. Making the 
effort to do this is worthwhile because 
every error caught at compile time is 
one less bug that can incur extra cost 
during testing or in the field.

The Select() API fails this guide-
line because, by overwriting its argu-
ments, it sets a policy that is in direct 
conflict with the most common use 
case. Similarly, the .NET Receive() 
API commits this crime for nonblock-
ing sockets: it throws an exception if 
the call worked but no data is ready, 
and it returns zero without an excep-
tion if the connection is lost. This is 
the precise opposite of what the caller 
needs, and it is sobering to look at the 
mess of control flow this causes for 
the caller.

Sometimes, the design tension 
cannot be resolved despite the best ef-
forts of the designer. This is often the 
case when little can be known about 
context because an API is low-level 
or must, by its nature, work in many 
different contexts (as is the case for 
general-purpose collection classes, 

for example). In this case, the strat-
egy pattern can often be used to good 
effect. It allows the caller to supply 
a policy (for example, in the form of 
a caller-provided comparison func-
tion that is used to maintain ordered 
collections) and so keeps the design 
open. Depending on the programming 
language, caller-provided policies can 
be implemented with callbacks, vir-
tual functions, delegates, or template 
parameters (among others). If the API 
provides sensible defaults, such exter-
nalized policies can lead to more flexi-
bility without compromising usability 
and clarity. (Be careful, though, not to 
“pass the buck,” as described later in 
this article.)

APIs should be designed from the per-
spective of the caller. When a program-
mer is given the job of creating an 
API, he or she is usually immediately 
in problem-solving mode: What data 
structures and algorithms do I need 
for the job, and what input and out-
put parameters are necessary to get 
it done? It’s all downhill from there: 
the implementer is focused on solving 
the problem, and the concerns of the 
caller are quickly forgotten. Here is a 
typical example of this:

makeTV(false, true);

This evidently is a function call that 
creates a TV. But what is the meaning 
of the parameters? Compare with the 
following:

makeTV(Color, FlatScreen);

The second version is much more 
readable to the caller: even without 
reading the manual, it is obvious that 
the call creates a color flat-screen TV. 
To the implementer, however, the first 
version is just as usable:

void makeTV( 
    bool isBlackAndWhite, 
    bool isFlatScreen) 
{ /* ...  */ }

The implementer gets nicely named 
variables that indicate whether the TV 
is black and white or color, and wheth-
er it has a flat screen or a conventional 
one, but that information is lost to the 
caller. The second version requires 
the implementer to do more work—
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namely, to add enum definitions and 
change the function signature:

enum ColorType { 
    Color,
    BlackAndWhite };
enum ScreenType { 
    CRT,
    FlatScreen };
void makeTV( 
    ColorType col,   
    ScreenType st);

This alternative definition requires 
the implementer to think about the 
problem in terms of the caller. How-
ever, the implementer is preoccupied 
with getting the TV created, so there is 
little room in the implementer’s mind 
for worrying about somebody else’s 
problems.

A great way to get usable APIs is to 
let the customer (namely, the caller) 
write the function signature, and to 
give that signature to a programmer to 
implement. This step alone eliminates 
at least half of poor APIs: too often, the 
implementers of APIs never use their 
own creations, with disastrous con-
sequences for usability. Moreover, an 
API is not about programming, data 
structures, or algorithms—an API is a 
user interface, just as much as a GUI. 
The user at the using end of the API is a 
programmer—that is, a human being. 
Even though we tend to think of APIs 
as machine interfaces, they are not: 
they are human–machine interfaces.

What should drive the design of 
APIs is not the needs of the imple-
menter. After all, the implementer 
needs to implement the API only once, 
but the callers of the API need to call it 
hundreds or thousands of times. This 
means that good APIs are designed 
with the needs of the caller in mind, 
even if that makes the implementer’s 
job more complicated.

Good APIs don’t pass the buck. There 
are many ways to “pass the buck” 
when designing an API. A favorite way 
is to be afraid of setting policy: “Well, 
the caller might want to do this or that, 
and I can’t be sure which, so I’ll make 
it configurable.” The typical outcome 
of this approach is functions that take 
five or 10 parameters. Because the de-
signer does not have the spine to set 
policy and be clear about what the 
API should and should not do, the API 

ends up with far more complexity than 
necessary. This approach also violates 
minimalism and the principle of “I 
should not pay for what I don’t use”: 
if a function has 10 parameters, five of 
which are irrelevant for the majority of 
use cases, callers pay the price of sup-
plying 10 parameters every time they 
make a call, even when they could not 
care less about the functionality pro-
vided by the extra five parameters. A 
good API is clear about what it wants 
to achieve and what it does not want 
to achieve, and is not afraid to be up-
front about it. The resulting simplicity 
usually amply repays the minor loss of 
functionality, especially if the API has 
well-chosen fundamental operations 
that can easily be composed into more 
complex ones.

Another way of passing the buck is 
to sacrifice usability on the altar of ef-
ficiency. For example, the CORBA C++ 
mapping requires callers to fastidious-
ly keep track of memory allocation and 
deallocation responsibilities; the re-
sult is an API that makes it incredibly 
easy to corrupt memory. When bench-
marking the mapping, it turns out to 
be quite fast because it avoids many 
memory allocations and deallocations. 
The performance gain, however, is an 
illusion because, instead of the API do-
ing the dirty work, it makes the caller 
responsible for doing the dirty work—
overall, the same number of memory 
allocations takes place regardless. In 
other words, a safer API could be pro-
vided with zero runtime overhead. By 
benchmarking only the work done 
inside the API (instead of the overall 
work done by both caller and API), the 
designers can claim to have created a 
better-performing API, even though 
the performance advantage is due only 
to selective accounting.

The original C version of Select() 
exhibits the same approach:

int select(int nfds,  
 fd _ set *readfds, 
 fd _ set *writefds,
 fd _ set *exceptfds,
 struct timeval *timeout);

Like the .NET version, the C ver-
sion also overwrites its arguments. 
This again reflects the needs of the 
implementer rather than the caller: it 
is easier and more efficient to clobber 
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the arguments than to allocate sepa-
rate output arrays of file descriptors, 
and it avoids the problems of how to 
deallocate the output arrays again. All 
this really does, however, is shift the 
burden from implementer to caller—
at a net efficiency gain of zero.

The Unix kernel also is not with-
out blemish and passes the buck oc-
casionally: many a programmer has 
cursed the decision to allow some 
system calls to be interrupted, forcing 
programmers to deal explicitly with 
EINTR and restart interrupted system 
calls manually, instead of having the 
kernel do this transparently.

Passing the buck can take many 
different forms, the details of which 
vary greatly from API to API. The key 
questions for the designer are: Is there 
anything I could reasonably do for the 
caller I am not doing? If so, do I have 
valid reasons for not doing it? Explic-
itly asking these questions makes de-
sign the result of a conscious process 
and discourages “design by accident.”

APIs should be documented before 
they are implemented. A big prob-
lem with API documentation is that 
it is usually written after the API is 
implemented, and often written by 
the implementer. The implementer, 
however, is mentally contaminated 
by the implementation and will have 
a tendency simply to write down what 
he or she has done. This often leads to 
incomplete documentation because 
the implementer is too familiar with 
the API and assumes that some things 
are obvious when they are not. Worse, 
it often leads to APIs that miss impor-
tant use cases entirely. On the other 
hand, if the caller (not the imple-
menter) writes the documentation, 
the caller can approach the problem 
from a “this is what I need” perspec-
tive, unburdened by implementation 
concerns. This makes it more likely 
that the API addresses the needs of the 
caller and prevents many design flaws 
from arising in the first place.

Of course, the caller may ask for 
something that turns out to be unrea-
sonable from an implementation per-
spective. Caller and implementer can 
then iterate over the design until they 
reach agreement. That way, neither 
caller nor implementation concerns 
are neglected.

Once documented and imple-

mented, the API should be tried out by 
someone unfamiliar with it. Initially, 
that person should check how much 
of the API can be understood without 
looking at the documentation. If an 
API can be used without documen-
tation, chances are that it is good: a 
self-documenting API is the best kind 
of API there is. While test driving the 
API and its documentation, the user 
is likely to ask important “what if” 
questions: What if the third param-
eter is null? Is that legal? What if I 
want to wait indefinitely for a socket 
to become ready? Can I do that? These 
questions often pinpoint design flaws, 
and a cross-check with the documen-
tation will confirm whether the ques-
tions have answers and whether the 
answers are reasonable.

Make sure that documentation is 
complete, particularly with respect 
to error behavior. The behavior of an 
API when things go wrong is as much 
a part of the formal contract as when 
things go right. Does the documenta-
tion say whether the API maintains 
the strong exception guarantee? Does 
it detail the state of out and in-out 
parameters in case of an error? Does 
it detail any side effects that may 
linger after an error has occurred? 
Does it provide enough information 
for the caller to make sense of an er-
ror? (Throwing a DidntWork excep-
tion from all socket operations just 
doesn’t cut it!) Programmers do need 
to know how an API behaves when 
something goes wrong, and they do 
need to get detailed error information 
they can process programmatically. 
(Human-readable error messages are 
nice for diagnostics and debugging, 
but not nice if they are the only things 
available—there is nothing worse 
than having to write a parser for error 
strings just so I can control the flow of 
my program.)

Unit and system testing also have 
an impact on APIs because they can 
expose things that no one thought of 
earlier. Test results can help improve 
the documentation and, therefore, the 
API. (Yes, the documentation is part of 
the API.)

The worst person to write docu-
mentation is the implementer, and 
the worst time to write documenta-
tion is after implementation. Doing 
so greatly increases the chance that 

With the  
ever-growing 
importance of 
computing,  
there are aPis 
whose correct 
functioning is 
important almost 
beyond description.



practice

may 2009  |   vol.  52  |   no.  5  |   communications of the acm     55

interface, implementation, and docu-
mentation will all have problems.

Good APIs are ergonomic. Ergonom-
ics is a major field of study in its own 
right, and probably one of the hardest 
parts of API design to pin down. Much 
has been written about this topic in 
the form of style guides that define 
naming conventions, code layout, doc-
umentation style, and so on. Beyond 
mere style issues though, achieving 
good ergonomics is hard because it 
raises complex cognitive and psycho-
logical issues. Programmers are hu-
mans and are not created with cookie 
cutters, so an API that seems fine to 
one programmer can be perceived as 
only so-so by another.

Especially for large and complex 
APIs, a major part of ergonomics re-
lates to consistency. For example, an 
API is easier to use if its functions al-
ways place parameters of a particular 
type in the same order. Similarly, APIs 
are easier to use if they establish nam-
ing themes that group related func-
tions together with a particular nam-
ing style. The same is true for APIs that 
establish simple and uniform conven-
tions for related tasks and that use 
uniform error handling.

Consistency is important because 
not only does it make things easier 
to use and memorize, but it also en-
ables transference of learning: having 
learned a part of an API, the caller also 
has learned much of the remainder of 
the API and so experiences minimal 
friction. Transference is important 
not only within APIs but also across 
APIs—the more concepts APIs can 
adopt from each other, the easier it 
becomes to master all of them. (The 
Unix standard I/O library violates this 
idea in a number of places. For exam-
ple, the read() and write() system 
calls place the file descriptor first, but 
the standard library I/O calls, such as 
fgets() and fputs(), place the stream 
pointer last, except for fscan()and 
fprint(), which place it first. This 
lack of parallelism is jarring to many 
people.)

Good ergonomics and getting an 
API to “feel” right require a lot of ex-
pertise because the designer has to 
juggle numerous and often conflict-
ing demands. Finding the correct 
trade-off among these demands is the 
hallmark of good design.

grating existing functionality or about 
repackaging it in some way. To put it 
differently: API design today is much 
more important than it was 20 years 
ago, not only because we are designing 
more APIs, but also because these APIs 
tend to provide access to much richer 
and more complex functionality.

Looking at the curriculum of many 
universities, it seems that this shift in 
emphasis has gone largely unnoticed. 
In my days as an undergraduate, no 
one ever bothered to explain how to 
decide whether something should 
be a return value or an out param-
eter, how to choose between raising 
an exception and returning an error 
code, or how to decide if it might be 
appropriate for a function to modify 
its arguments. Little seems to have 
changed since then: my son, who is 
currently working toward a software 
engineering degree at the same uni-
versity where I earned my degree, tells 
me that still no one bothers to explain 
these things. Little wonder then that 
we see so many poorly designed APIs: 
it is not reasonable to expect program-
mers to be good at something they 
have never been taught.

Yet, good API design, even though 
complex, is something that can be 
taught. If undergraduates can learn 
how to write hash tables, they can also 
learn when it is appropriate to throw 
an exception as opposed to return-
ing an error code, and they can learn 
to distinguish a poor API from a good 
one. What is needed is recognition 
of the importance of the topic; much 
of the research and wisdom are avail-
able already—all we need to do is pass 
them on.

Career Path. I am 49, and I write 
code. Looking around me, I realize 
how unusual this is: in my company, 
all of my programming colleagues 
are younger than I and, when I look 
at former programming colleagues, 
most of them no longer write code; in-
stead, they have moved on to different 
positions (such as project manager) 
or have left the industry entirely. I see 
this trend everywhere in the software 
industry: older programmers are rare, 
quite often because no career path ex-
ists for them beyond a certain point. 
I recall how much effort it took me 
to resist a forced “promotion” into 
a management position at a former 

aPi change Requires 
cultural change
I am convinced that it is possible to 
do better when it comes to API design. 
Apart from the nitty-gritty technical is-
sues, I believe that we need to address 
a number of cultural issues to get on 
top of the API problem. What we need 
is not only technical wisdom, but also 
a change in the way we teach and prac-
tice software engineering.

Education. Back in the late 1970s 
and early 1980s, when I was cutting 
my teeth as a programmer and getting 
my degree, much of the emphasis in a 
budding programmer’s education was 
on data structures and algorithms. 
They were the bread and butter of pro-
gramming, and a good understand-
ing of data structures such as lists, 
balanced trees, and hash tables was 
essential, as was a good understand-
ing of common algorithms and their 
performance trade-offs. These were 
also the days when system libraries 
provided only the most basic func-
tions, such as simple I/O and string 
manipulation; higher-level functions 
such as bsearch() and qsort() were 
the exception rather than the rule. 
This meant that it was de rigueur for a 
competent programmer to know how 
to write various data structures and 
manipulate them efficiently.

We have moved on considerably 
since then. Virtually every major de-
velopment platform today comes with 
libraries full of pre-canned data struc-
tures and algorithms. In fact, these 
days, if I catch a programmer writing 
a linked list, that person had better 
have a very good reason for doing so 
instead of using an implementation 
provided by a system library.

Similarly, during this period, if I 
wanted to create software, I had to 
write pretty much everything from 
scratch: if I needed encryption, I wrote 
it from scratch; if I needed compres-
sion, I wrote it from scratch; if I needed 
inter-process communication, I wrote 
it from scratch. All this has changed 
dramatically with the open source 
movement. Today, open source is 
available for almost every imaginable 
kind of reusable functionality. As a re-
sult, the process of creating software 
has changed considerably: instead of 
creating functionality, much of today’s 
software engineering is about inte-
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company—I ended up staying a pro-
grammer, but was told that future pay 
increases were pretty much out of the 
question if I was unwilling to move 
into management. 

There is also a belief that older pro-
grammers “lose the edge” and don’t 
cut it anymore. That belief is mistak-
en in my opinion; older programmers 
may not burn as much midnight oil as 
younger ones, but that’s not because 
they are old, but because they get the 
job done without having to stay up 
past midnight.

This loss of older programmers 
is unfortunate, particularly when it 
comes to API design. While good API 
design can be learned, there is no sub-
stitute for experience. Many good APIs 
were created by programmers who had 
to suffer under a bad one and then de-
cided to redo the job, but properly this 
time. It takes time and a healthy dose of 
“once burned, twice shy” to gather the 
expertise that is necessary to do better. 
Unfortunately, the industry trend is to 
promote precisely its most experienced 
people away from programming, just 
when they could put their accumulated 
expertise to good use.

Another trend is for companies to 
promote their best programmers to 
designer or system architect. Typically, 
these programmers are farmed out to 
various projects as consultants, with 
the aim of ensuring that the project 
takes off on the right track and avoids 
mistakes it might make without the 
wisdom of the consultants. The intent 
of this practice is laudable, but the 
outcome is usually sobering: because 
the consultants are so valuable, having 
given their advice, they are moved to 
the next project long before implemen-
tation is finished, let alone testing and 
delivery. By the time the consultants 
have moved on, any problems with 
their earlier sage advice are no longer 
their problems, but the problems of a 
project they have long since left behind. 
In other words, the consultants never 
get to live through the consequences of 
their own design decisions, which is a 
perfect way to breed them into incom-
petence. The way to keep designers 
sharp and honest is to make them eat 
their own dog food. Any process that 
deprives designers of that feedback is 
ultimately doomed to failure.

External Controls. Years ago, I was 

working on a large development proj-
ect that, for contractual reasons, was 
forced into an operating-system up-
grade during a critical phase shortly 
before a delivery deadline. After the 
upgrade, the previously working sys-
tem started behaving strangely and 
occasionally produced random and 
inexplicable failures. The process 
of tracking down the problem took 
nearly two days, during which a large 
team of programmers was mostly twid-
dling its thumbs. Ultimately, the cause 
turned out to be a change in the behav-
ior of awk’s index() function. Once 
we identified the problem, the fix was 
trivial—we simply installed the previ-
ous version of awk. The point is that a 
minor change in the semantics of a mi-
nor part of an API had cost the project 
thousands of dollars, and the change 
was the result of a side effect of a pro-
grammer fixing an unrelated bug.

This anecdote hints at a problem 
we will increasingly have to face in 
the future. With the ever-growing im-
portance of computing, there are APIs 
whose correct functioning is impor-
tant almost beyond description. For 
example, consider the importance of 
APIs such as the Unix system call inter-
face, the C library, Win32, or OpenSSL. 
Any change in interface or semantics 
of these APIs incurs an enormous eco-
nomic cost and can introduce vulner-
abilities. It is irresponsible to allow a 
single company (let alone a single de-
veloper) to make changes to such criti-
cal APIs without external controls.

As an analogy, a building contractor 
cannot simply try out a new concrete 
mixture to see how well it performs. To 
use a new concrete mixture, a lengthy 
testing and approval process must be 
followed, and failure to follow that 
process incurs criminal penalties. At 
least for mission-critical APIs, a simi-
lar process is necessary, as a matter of 
self-defense: if a substantial fraction 
of the world’s economy depends on 
the safety and correct functioning of 
certain APIs, it stands to reason that 
any changes to these APIs should be 
carefully monitored.

Whether such controls should take 
the form of legislation and criminal 
penalties is debatable. Legislation 
would likely introduce an entirely new 
set of problems, such as stifling in-
novation and making software more 

expensive. (The ongoing legal battle 
between Microsoft and the European 
Union is a case in point.) I see a real 
danger of just such a scenario occur-
ring. Up to now, we have been lucky, 
and the damage caused by malware 
such as worms has been relatively 
minor. We won’t be lucky forever: the 
first worm to exploit an API flaw to 
wipe out more than 10% of the world’s 
PCs would cause economic and hu-
man damage on such a scale that leg-
islators would be kicked into action. If 
that were to happen, we would likely 
swap one set of problems for another 
one that is worse.

What are the alternatives to legisla-
tion? The open source community has 
shown the way for many years: open 
peer review of APIs and implementa-
tions has proven an extremely effec-
tive way to ferret out design flaws, in-
efficiencies, and security holes. This 
process avoids the problems associ-
ated with legislation, catches many 
flaws before an API is widely used, and 
makes it more likely that, when a zero-
day defect is discovered, it is fixed and 
a patch distributed promptly.

In the future, we will likely see a 
combination of both tighter legislative 
controls and more open peer review. 
Finding the right balance between the 
two is crucial to the future of comput-
ing and our economy. API design truly 
matters—but we had better realize 
it before events run away with things 
and remove any choice.  
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