
46 communications of the acm | may 2009 | vol. 52 | no. 5

practice

aPi
Design
matters

Doi:10.1145/1506409.1506424

 article development led by
 queue.acm.org

Bad application programming interfaces
plague software engineering. How do we
get things right?

BY michi henning

After more thAn 25 years as a software engineer,
I still find myself underestimating the time it
takes to complete a particular programming task.
Sometimes, the resulting schedule slip is caused
by my own shortcomings: as I dig into a problem, I
simply discover it is a lot more difficult than I initially
thought, so the problem takes longer to solve—such
is life as a programmer. Just as often I know exactly
what I want to achieve and how to achieve it, but it
still takes far longer than anticipated. When that
happens, it is usually because I am struggling with

an application programming interface
(API) that seems to do its level best to
throw rocks in my path and make my
life difficult. What I find telling is that,
even after 25 years of progress in soft-
ware engineering, this still happens.
Worse, recent APIs implemented in
modern programming languages
make the same mistakes as their
20-year-old counterparts written in C.
There seems to be something elusive
about API design that, despite years of
progress, we have yet to master.

Good APIs are hard. We all recognize
a good API when we get to use one.
Good APIs are a joy to use. They work
without friction and almost disappear

may 2009 | vol. 52 | no. 5 | communications of the acm 47

from sight: the right call for a particu-
lar job is available at just the right time,
can be found and memorized easily, is
well documented, has an interface that
is intuitive to use, and deals correctly
with boundary conditions.

So, why are there so many bad APIs
around? The prime reason is that, for
every way to design an API correctly,
there are usually dozens of ways to
design it incorrectly. Simply put, it is
very easy to create a bad API and rather
difficult to create a good one. Even mi-
nor and quite innocent design flaws
have a tendency to get magnified out
of all proportion because APIs are pro-
vided once, but are called many times.

If a design flaw results in awkward or
inefficient code, the resulting prob-
lems show up at every point the API
is called. In addition, separate design
flaws that in isolation are minor can
interact with each other in surprising-
ly damaging ways and quickly lead to a
huge amount of collateral damage.

Bad APIs are easy. Let me show you
by example how seemingly innocuous
design choices can have far-reaching
ramifications. This example, which
I came across in my day-to-day work,
nicely illustrates the consequences
of bad design. (Literally hundreds of
similar examples can be found in vir-
tually every platform; my intent is not

to single out .NET in particular.)
Figure 1 shows the interface to the

.NET socket Select() function in C#.
The call accepts three lists of sockets
that are to be monitored: a list of sock-
ets to check for readability, a list of
sockets to check for writeability, and
a list of sockets to check for errors. A
typical use of Select() is in servers
that accept incoming requests from
multiple clients; the server calls Se-
lect() in a loop and, in each iteration
of the loop, deals with whatever sock-
ets are ready before calling Select()
again. This loop looks something like
the one shown in Figure 1.

The first observation is that Se-I
l

l
u

s
t

r
a

t
I

o
n

 b
y

 l
e

a
n

d
e

r
 H

e
r

z
o

g

48 communications of the acm | may 2009 | vol. 52 | no. 5

practice

no further explanation of the mean-
ing of this parameter. Of course, the
question immediately arises, “How
do I wait indefinitely?” Seeing that
.NET Select() is just a thin wrapper
around the underlying Win32 API, the
caller is likely to assume that a nega-
tive time-out value indicates that Se-
lect() should wait forever. A quick ex-
periment, however, confirms that any
time-out value equal to or less than
zero is taken to mean “return immedi-
ately if no socket is ready.” (This prob-
lem has been fixed in the .NET 2.0 ver-
sion of Select().) To wait “forever,”
the best thing the caller can do is pass
Int.MaxValue (231-1). That turns out
to be a little over 35 minutes, which
is nowhere near “forever.” Moreover,
how should Select() be used if a time-
out is required that is not infinite, but
longer than 35 minutes?

When I first came across this prob-
lem, I thought, “Well, this is unfortu-
nate, but not a big deal. I’ll simply write
a wrapper for Select() that transpar-
ently restarts the call if it times out af-
ter 35 minutes. Then I change all calls
to Select() in the code to call that
wrapper instead.”

So, let’s take a look at creating this
drop-in replacement, called doSe-
lect(), shown in Figure 2. The signa-
ture (prototype) of the call is the same
as for the normal Select(), but we
want to ensure that negative time-out
values cause it to wait forever and that
it is possible to wait for more than 35
minutes. Using a granularity of mil-
liseconds for the time-out allows a
time-out of a little more than 24 days,
which I will assume is sufficient.

Note the terminating condition of
the do-loop in the code in Figure 2: it
is necessary to check the length of all
three lists because Select() does not
indicate whether it returned because
of a time-out or because a socket is
ready. Moreover, if the caller is not
interested in using one or two of the
three lists, it can pass either null or an
empty list. This forces the code to use
the awkward test to control the loop
because, when Select() returns, one
or two of the three lists may be null (if
the caller passed null) or may be not
null, but empty.

The problem here is that there are
two legal parameter values for one and
the same thing: both null and an emp-

lect() overwrites its arguments: the
lists passed into the call are replaced
with lists containing only those sock-
ets that are ready. As a rule, however,
the set of sockets to be monitored
rarely changes, and the most common
case is that the server passes the same
lists in each iteration. Because Se-
lect() overwrites its arguments, the
caller must make a copy of each list
before passing it to Select(). This is
inconvenient and does not scale well:
servers frequently need to monitor
hundreds of sockets so, on each itera-
tion, the code has to copy the lists be-
fore calling Select(). The cost of do-
ing this is considerable.

A second observation is that, al-
most always, the list of sockets to
monitor for errors is simply the union
of the sockets to monitor for reading
and writing. (It is rare that the caller
wants to monitor a socket only for er-
ror conditions, but not for readability
or writeability.) If a server monitors
100 sockets each for reading and writ-
ing, it ends up copying 300 list ele-
ments on each iteration: 100 each for
the read, write, and error lists. If the
sockets monitored for reading are not
the same as the ones monitored for
writing, but overlap for some sockets,
constructing the error list gets harder
because of the need to avoid placing
the same socket more than once on
the error list (or even more inefficient,
if such duplicates are accepted).

Yet another observation is that Se-
lect() accepts a time-out value in
microseconds: if no socket becomes
ready within the specified time-out,
Select() returns. Note, however,
that the function has a void return
type—that is, it does not indicate on
return whether any sockets are ready.
To determine whether any sockets are
ready, the caller must test the length of
all three lists; no socket is ready only if
all three lists have zero length. If the
caller happens to be interested in this
case, it has to write a rather awkward
test. Worse, Select() clobbers the
caller’s arguments if it times out and
no socket is ready: the caller needs to
make a copy of the three lists on each
iteration even if nothing happens!

The documentation for Select()
in .NET 1.1 states this about the time-
out parameter: “The time to wait for a
response, in microseconds.” It offers

it is very easy to
create a bad aPi
and rather difficult
to create a good
one. even minor
and quite innocent
design flaws have
a tendency to get
magnified out
of all proportion
because aPis are
provided once,
but are called
many times.

practice

may 2009 | vol. 52 | no. 5 | communications of the acm 49

ty list indicate that the caller is not
interested in monitoring one of the
passed lists. In itself, this is not a big
deal but, if I want to reuse Select() as
in the preceding code, it turns out to
be rather inconvenient.

The second part of the code, which
deals with restarting Select() for
time-outs greater than 35 minutes,
also gets rather complex, both be-
cause of the awkward test needed to
detect whether a time-out has indeed
occurred and because of the need to
deal with the case in which millisec-
onds * 1000 does not divide Int.Max-
Value without leaving a remainder.

We are not finished yet: the preced-
ing code still contains comments in
place of copying the input parameters
and copying the results back into those
parameters. One would think that this
is easy: simply call a Clone() method,
as one would do in Java. Unlike Java,
however, .NET’s type Object (which is
the ultimate base type of all types) does
not provide a Clone method; instead,
for a type to be cloneable, it must ex-
plicitly derive from an ICloneable in-
terface. The formal parameter type of
the lists passed to Select() is IList,
which is an interface and, therefore,
abstract: I cannot instantiate things of
type IList, only things derived from
IList. The problem is that IList does
not derive from ICloneable, so there
is no convenient way to copy an IList
except by explicitly iterating over the
list contents and doing the job ele-
ment by element. Similarly, there is
no method on IList that would al-
low it to be easily overwritten with
the contents of another list (which is
necessary to copy the results back into
the parameters before doSelect() re-
turns). Again, the only way to achieve
this is to iterate and copy the elements
one at a time.

Another problem with Select() is
that it accepts lists of sockets. Lists
allow the same socket to appear more
than once in each list, but doing so
doesn’t make sense: conceptually,
what is passed are sets of sockets. So,
why does Select()use lists? The an-
swer is simple: the .NET collection
classes do not include a set abstrac-
tion. Using IList to model a set is un-
fortunate: it creates a semantic prob-
lem because lists allow duplicates.
(The behavior of Select() in the pres-

ence of duplicates is anybody’s guess
because it is not documented; check-
ing against the actual behavior of the
implementation is not all that useful
because, in the absence of documen-
tation, the behavior can change with-
out warning.) Using IList to model a
set is also detrimental in other ways:
when a connection closes, the serv-
er must remove the corresponding
socket from its lists. Doing so requires
the server either to perform a linear
search (which does not scale well) or
to maintain the lists in sorted order so
it can use a split search (which is more
work). This is a good example of how
design flaws have a tendency to spread
and cause collateral damage: an over-
sight in one API causes grief in an un-
related API.

I will spare you the details of how
to complete the wrapper code. Suffice
it to say that the supposedly simple
wrapper I set out to write, by the time
I had added parameter copying, error
handling, and a few comments, ran to
nearly 100 lines of fairly complex code.
All this because of a few seemingly mi-
nor design flaws:

Select() ˲ overwrites its arguments.
Select() ˲ does not provide a sim-

ple indicator that would allow the
caller to distinguish a return because

of a time-out from a return because a
socket is ready.

Select() ˲ does not allow a time-out
longer than 35 minutes.

Select() ˲ uses lists instead of sets
of sockets.

Here is what Select() could look
like instead:

public static int
Select(ISet checkRead,
 ISet checkWrite,
 Timespan seconds,
 out ISet readable,
 out ISet writeable,
 out ISet error);

With this version, the caller pro-
vides sets to monitor sockets for read-
ing and writing, but no error set: sock-
ets in both the read set and the write
set are automatically monitored for
errors. The time-out is provided as a
Timespan (a type provided by .NET)
that has resolution down to 100 nano-
seconds, a range of more than 10
million days, and can be negative (or
null) to cover the “wait forever” case.
Instead of overwriting its arguments,
this version returns the sockets that
are ready for reading, writing, and have
encountered an error as separate sets,
and it returns the number of sockets

figure 1: the .net socket select() in c++.

public static void Select(List checkRead, List checkWrite,
 List checkError, int microseconds);
// Server code
int timeout = ...;
ArrayList readList = ...; // Sockets to monitor for reading.
ArrayList writeList = ...; // Sockets to monitor for writing.
ArrayList errorList; // Sockets to monitor for errors.

while (!done) {
SocketList readTmp = readList.Clone();
SocketList writeTmp = writeList.Clone();
SocketList errorTmp = readList.Clone();
Select(readTmp, writeTmp, errorTmp, timeout);
for (int i = 0; i < readTmp.Count; ++i) {
 // Deal with each socket that is ready for reading...
}
for (int i = 0; i < writeTmp.Count; ++i) {
 // Deal with each socket that is redy for writing...
}
for (int i = 0; i < errorTmp.Count; ++i) {
 // Deal with each socket that encountered an error...
}
if (readTmp.Count == 0 &&
 writeTmp.Count == 0 &&
 errorTmp.Count == 0) {
 // No sockets are ready...
}

}

50 communications of the acm | may 2009 | vol. 52 | no. 5

practice

that are ready or zero, in which case
the call returned because the time-out
was reached. With this simple change,
the usability problems disappear and,
because the caller no longer needs to
copy the arguments, the code is far
more efficient as well.

There are many other ways to fix the
problems with Select() (such as the
approach used by epoll()). The point
of this example is not to come up with
the ultimate version of Select(), but
to demonstrate how a small number
of minor oversights can quickly add
up to create code that is messy, dif-
ficult to maintain, error prone, and
inefficient. With a slightly better in-
terface to Select(), none of the code I
outlined here would be necessary, and
I (and probably many other program-
mers) would have saved considerable
time and effort.

the cost of Poor aPis
The consequences of poor API design
are numerous and serious. Poor APIs
are difficult to program with and often
require additional code to be written,
as in the preceding example. If noth-
ing else, this additional code makes
programs larger and less efficient be-
cause each line of unnecessary code
increases working set size and reduc-
es CPU cache hits. Moreover, as in the
preceding example, poor design can
lead to inherently inefficient code by
forcing unnecessary data copies. (An-
other popular design flaw—namely,
throwing exceptions for expected
outcomes—also causes inefficiencies
because catching and handling ex-
ceptions is almost always slower than
testing a return value.)

The effects of poor APIs, however,
go far beyond inefficient code: poor
APIs are harder to understand and
more difficult to work with than good
ones. In other words, programmers
take longer to write code against poor
APIs than against good ones, so poor
APIs directly lead to increased develop-
ment cost. Poor APIs often require not
only extra code, but also more complex
code that provides more places where
bugs can hide. The cost is increased
testing effort and increased likelihood
for bugs to go undetected until the
software is deployed in the field, when
the cost of fixing bugs is highest.

Much of software development

colleagues suffer. If I mis-design a
function in a widely published library,
potentially tens of thousands of pro-
grammers suffer.

Of course, end users also suffer. The
suffering can take many forms, but the
cumulative cost is invariably high. For
example, if Microsoft Word contains a
bug that causes it to crash occasionally
because of a mis-designed API, thou-
sands or hundreds of thousands of
end users lose valuable time. Similarly,
consider the numerous security holes
in countless applications and system
software that, ultimately, are caused
by unsafe I/O and string manipulation
functions in the standard C library
(such as scanf() and strcpy()). The
effects of these poorly designed APIs
are still with us more than 30 years
after they were created, and the cumu-
lative cost of the design defects easily
runs to many billions of dollars.

Perversely, layering of abstractions
is often used to trivialize the impact
of a bad API: “It doesn’t matter—we
can just write a wrapper to hide the
problems.” This argument could not
be more wrong because it ignores the

is about creating abstractions, and
APIs are the visible interfaces to these
abstractions. Abstractions reduce
complexity because they throw away
irrelevant detail and retain only the
information that is necessary for a
particular job. Abstractions do not
exist in isolation; rather, we layer ab-
stractions on top of each other. Appli-
cation code calls higher-level libraries
that, in turn, are often implemented
by calling on the services provided by
lower-level libraries that, in turn, call
on the services provided by the system
call interface of an operating system.
This hierarchy of abstraction layers
is an immensely powerful and useful
concept. Without it, software as we
know it could not exist because pro-
grammers would be completely over-
whelmed by complexity.

The lower in the abstraction hier-
archy an API defect occurs, the more
serious are the consequences. If I mis-
design a function in my own code, the
only person affected is me, because
I am the only caller of the function. If
I mis-design a function in one of our
project libraries, potentially all of my

figure 2: the doselect() function.

public void doSelect(List checkRead, List checkWrite,
 List checkError, int milliseconds)
{
 ArrayList readCopy; // Copies of the three parameters because
 ArrayList writeCopy; // Select() clobbers them.
 ArrayList errorCopy;
 if (milliseconds <= 0) {
 // Simulate waiting forever.
 do {
 // Make copy of the three lists here...
 Select(readCopy, writeCopy, errorCopy, Int32.MaxValue);
 } while ((readCopy == null || readCopy.Count == 0) &&
 (writeCopy == null || writeCopy.Count == 0) &&
 (errorCopy == null || errorCopy.Count == 0));
 } else {
 // Deal with non-infinite timeouts.
 while ((milliseconds > Int32.MaxValue / 1000) &&
 (readCopy == null || readCopy.Count == 0) &&
 (writeCopy == null || writeCopy.Count == 0) &&
 (errorCopy == null || errorCopy.Count == 0)) {
 // Make a copy of the three lists here...
 Select(readCopy, writeCopy, errorCopy,
 (Int32.MaxValue / 1000) * 1000);
 milliseconds -= Int32.MaxValue / 1000;
 }
 }
 if ((readCopy == null || readCopy.Count == 0) &&
 (writeCopy == null || writeCopy.Count == 0) &&
 (errorCopy == null || errorCopy == 0)) {
 Select(checkRead, checkWrite, checkError, milliseconds*1000);
 }
 // Copy the three lists back into the original parameters here...
}

practice

may 2009 | vol. 52 | no. 5 | communications of the acm 51

cost of doing so. First, even the most
efficient wrapper adds some cost in
terms of memory and execution speed
(and wrappers are often far from effi-
cient). Second, for a widely used API,
the wrapper will be written thousands
of times, whereas getting the API right
in the first place needs to be done only
once. Third, more often than not, the
wrapper creates its own set of prob-
lems: the .NET Select() function is
a wrapper around the underlying C
function; the .NET version first fails to
fix the poor interface of the original,
and then adds its own share of prob-
lems by omitting the return value, get-
ting the time-out wrong, and passing
lists instead of sets. So, while creating
a wrapper can help to make bad APIs
more usable, that does not mean that
bad APIs do not matter: two wrongs
don’t make a right, and unnecessary
wrappers just lead to bloatware.

how to do Better
There are a few guidelines to use when
designing an API. These are not sure-
fire ways to guarantee success, but
being aware of these guidelines and
taking them explicitly into account
during design makes it much more
likely that the result will turn out to be
usable. The list is necessarily incom-
plete—doing the topic justice would
require a large book. Nevertheless,
here are a few of my favorite things to
think about when creating an API.

An API must provide sufficient func-
tionality for the caller to achieve its
task. This seems obvious: an API that
provides insufficient functionality is
not complete. As illustrated by the in-
ability of Select() to wait more than
35 minutes, however, such insuffi-
ciency can go undetected. It pays to
go through a checklist of functional-
ity during the design and ask, “Have I
missed anything?”

An API should be minimal, with-
out imposing undue inconvenience on
the caller. This guideline simply says
“smaller is better.” The fewer types,
functions, and parameters an API
uses, the easier it is to learn, remem-
ber, and use correctly. This minimal-
ism is important. Many APIs end up
as a kitchen sink of convenience func-
tions that can be composed of other,
more fundamental functions. (The
C++ standard string class with its

more than 100 member functions is
an example. After many years of pro-
gramming in C++, I still find myself
unable to use standard strings for any-
thing nontrivial without consulting
the manual.) The qualification of this
guideline, without imposing undue
inconvenience on the caller, is im-
portant because it draws attention to
real-world use cases. To design an API
well, the designer must have an under-
standing of the environment in which
the API will be used and design to that
environment. Whether or not to pro-
vide a nonfundamental convenience
function depends on how often the
designer anticipates that function
will be needed. If the function will be
used frequently, it is worth adding; if
it is used only occasionally, the added
complexity is unlikely to be worth the
rare gain in convenience.

The Unix kernel violates this guide-
line with wait(), waitpid(), wait3(),
and wait4(). The wait4() function
is sufficient because it can be used
to implement the functionality of
the first three. There is also waitid(),
which could almost, but not quite, be
implemented in terms of wait4(). The
caller has to read the documentation
for all five functions in order to work
out which one to use. It would be sim-
pler and easier for the caller to have
a single combined function instead.
This is also an example of how con-
cerns about backward compatibility
erode APIs over time: the API accu-
mulates crud that, eventually, does
more damage than the good it ever
did by remaining backward compat-
ible. (And the sordid history of stum-
bling design remains for all the world
to see.)

APIs cannot be designed without an
understanding of their context. Consid-
er a class that provides access to a set
of name value pairs of strings, such as
environment variables:

class NVPairs {
 public string
 lookup(string name);
 // ...
}

The lookup method provides ac-
cess to the value stored by the named
variable. Obviously, if a variable with
the given name is set, the function re-

a big problem with
aPi documentation
is that it is usually
written after the
aPi is implemented,
and often written by
the implementer.

52 communications of the acm | may 2009 | vol. 52 | no. 5

practice

turns its value. How should the func-
tion behave if the variable is not set?
There are several options:

Throw a ˲ VariableNotSet exception.
Return null. ˲

Return the empty string. ˲

Throwing an exception is appro-
priate if the designer anticipates that
looking for a variable that isn’t there
is not a common case and likely to
indicate something that the caller
would treat as an error. If so, throwing
an exception is exactly the right thing
because exceptions force the caller to
deal with the error. On the other hand,
the caller may look up a variable and, if
it is not set, substitute a default value.
If so, throwing an exception is exactly
the wrong thing because handling an
exception breaks the normal flow of
control and is more difficult than test-
ing for a null or empty return value.

Assuming that we decide not to
throw an exception if a variable is not
set, two obvious choices indicate that a
lookup failed: return null or the empty
string. Which one is correct? Again,
the answer depends on the anticipat-
ed use cases. Returning null allows the
caller to distinguish a variable that is
not set at all from a variable that is set
to the empty string, whereas return-
ing the empty string for variables that
are not set makes it impossible to dis-
tinguish a variable that was never set
from a variable that was explicitly set
to the empty string. Returning null is
necessary if it is deemed important to
be able to make this distinction; but,
if the distinction is not important, it is
better to return the empty string and
never return null.

General-purpose APIs should be “pol-
icy-free;” special-purpose APIs should be
“policy-rich.” In the preceding guide-
line, I mentioned that correct design
of an API depends on its context. This
leads to a more fundamental design
issue—namely, that APIs inevitably
dictate policy: an API performs opti-
mally only if the caller’s use of the API
is in agreement with the designer’s
anticipated use cases. Conversely, the
designer of an API cannot help but
dictate to the caller a particular set
of semantics and a particular style of
programming. It is important for de-
signers to be aware of this: the extent
to which an API sets policy has pro-
found influence on its usability.

If little is known about the context
in which an API is going to be used, the
designer has little choice but to keep
all options open and allow the API to
be as widely applicable as possible. In
the preceding lookup example, this
calls for returning null for variables
that are not set, because that choice
allows the caller to layer its own policy
on top of the API; with a few extra lines
of code, the caller can treat lookup of
a nonexistent variable as a hard er-
ror, substitute a default value, or treat
unset and empty variables as equiva-
lent. This generality, however, comes
at a price for those callers who do not
need the flexibility because it makes it
harder for the caller to treat lookup of
a nonexistent variable as an error.

This design tension is present in
almost every API—the line between
what should and should not be an er-
ror is very fine, and placing the line
incorrectly quickly causes major pain.
The more that is known about the con-
text of an API, the more “fascist” the
API can become—that is, the more
policy it can set. Doing so is doing a
favor to the caller because it catches
errors that otherwise would go unde-
tected. With careful design of types
and parameters, errors can often be
caught at compile time instead of be-
ing delayed until run time. Making the
effort to do this is worthwhile because
every error caught at compile time is
one less bug that can incur extra cost
during testing or in the field.

The Select() API fails this guide-
line because, by overwriting its argu-
ments, it sets a policy that is in direct
conflict with the most common use
case. Similarly, the .NET Receive()
API commits this crime for nonblock-
ing sockets: it throws an exception if
the call worked but no data is ready,
and it returns zero without an excep-
tion if the connection is lost. This is
the precise opposite of what the caller
needs, and it is sobering to look at the
mess of control flow this causes for
the caller.

Sometimes, the design tension
cannot be resolved despite the best ef-
forts of the designer. This is often the
case when little can be known about
context because an API is low-level
or must, by its nature, work in many
different contexts (as is the case for
general-purpose collection classes,

for example). In this case, the strat-
egy pattern can often be used to good
effect. It allows the caller to supply
a policy (for example, in the form of
a caller-provided comparison func-
tion that is used to maintain ordered
collections) and so keeps the design
open. Depending on the programming
language, caller-provided policies can
be implemented with callbacks, vir-
tual functions, delegates, or template
parameters (among others). If the API
provides sensible defaults, such exter-
nalized policies can lead to more flexi-
bility without compromising usability
and clarity. (Be careful, though, not to
“pass the buck,” as described later in
this article.)

APIs should be designed from the per-
spective of the caller. When a program-
mer is given the job of creating an
API, he or she is usually immediately
in problem-solving mode: What data
structures and algorithms do I need
for the job, and what input and out-
put parameters are necessary to get
it done? It’s all downhill from there:
the implementer is focused on solving
the problem, and the concerns of the
caller are quickly forgotten. Here is a
typical example of this:

makeTV(false, true);

This evidently is a function call that
creates a TV. But what is the meaning
of the parameters? Compare with the
following:

makeTV(Color, FlatScreen);

The second version is much more
readable to the caller: even without
reading the manual, it is obvious that
the call creates a color flat-screen TV.
To the implementer, however, the first
version is just as usable:

void makeTV(
 bool isBlackAndWhite,
 bool isFlatScreen)
{ /* ... */ }

The implementer gets nicely named
variables that indicate whether the TV
is black and white or color, and wheth-
er it has a flat screen or a conventional
one, but that information is lost to the
caller. The second version requires
the implementer to do more work—

practice

may 2009 | vol. 52 | no. 5 | communications of the acm 53

namely, to add enum definitions and
change the function signature:

enum ColorType {
 Color,
 BlackAndWhite };
enum ScreenType {
 CRT,
 FlatScreen };
void makeTV(
 ColorType col,
 ScreenType st);

This alternative definition requires
the implementer to think about the
problem in terms of the caller. How-
ever, the implementer is preoccupied
with getting the TV created, so there is
little room in the implementer’s mind
for worrying about somebody else’s
problems.

A great way to get usable APIs is to
let the customer (namely, the caller)
write the function signature, and to
give that signature to a programmer to
implement. This step alone eliminates
at least half of poor APIs: too often, the
implementers of APIs never use their
own creations, with disastrous con-
sequences for usability. Moreover, an
API is not about programming, data
structures, or algorithms—an API is a
user interface, just as much as a GUI.
The user at the using end of the API is a
programmer—that is, a human being.
Even though we tend to think of APIs
as machine interfaces, they are not:
they are human–machine interfaces.

What should drive the design of
APIs is not the needs of the imple-
menter. After all, the implementer
needs to implement the API only once,
but the callers of the API need to call it
hundreds or thousands of times. This
means that good APIs are designed
with the needs of the caller in mind,
even if that makes the implementer’s
job more complicated.

Good APIs don’t pass the buck. There
are many ways to “pass the buck”
when designing an API. A favorite way
is to be afraid of setting policy: “Well,
the caller might want to do this or that,
and I can’t be sure which, so I’ll make
it configurable.” The typical outcome
of this approach is functions that take
five or 10 parameters. Because the de-
signer does not have the spine to set
policy and be clear about what the
API should and should not do, the API

ends up with far more complexity than
necessary. This approach also violates
minimalism and the principle of “I
should not pay for what I don’t use”:
if a function has 10 parameters, five of
which are irrelevant for the majority of
use cases, callers pay the price of sup-
plying 10 parameters every time they
make a call, even when they could not
care less about the functionality pro-
vided by the extra five parameters. A
good API is clear about what it wants
to achieve and what it does not want
to achieve, and is not afraid to be up-
front about it. The resulting simplicity
usually amply repays the minor loss of
functionality, especially if the API has
well-chosen fundamental operations
that can easily be composed into more
complex ones.

Another way of passing the buck is
to sacrifice usability on the altar of ef-
ficiency. For example, the CORBA C++
mapping requires callers to fastidious-
ly keep track of memory allocation and
deallocation responsibilities; the re-
sult is an API that makes it incredibly
easy to corrupt memory. When bench-
marking the mapping, it turns out to
be quite fast because it avoids many
memory allocations and deallocations.
The performance gain, however, is an
illusion because, instead of the API do-
ing the dirty work, it makes the caller
responsible for doing the dirty work—
overall, the same number of memory
allocations takes place regardless. In
other words, a safer API could be pro-
vided with zero runtime overhead. By
benchmarking only the work done
inside the API (instead of the overall
work done by both caller and API), the
designers can claim to have created a
better-performing API, even though
the performance advantage is due only
to selective accounting.

The original C version of Select()
exhibits the same approach:

int select(int nfds,
 fd _ set *readfds,
 fd _ set *writefds,
 fd _ set *exceptfds,
 struct timeval *timeout);

Like the .NET version, the C ver-
sion also overwrites its arguments.
This again reflects the needs of the
implementer rather than the caller: it
is easier and more efficient to clobber

there is also a
belief that older
programmers
“lose the edge.”
that belief is
mistaken in my
opinion; older
programmers may
not burn as much
midnight oil as
younger ones, but
that’s not because
they are old, but
because they get
the job done without
having to stay up
past midnight.

54 communications of the acm | may 2009 | vol. 52 | no. 5

practice

the arguments than to allocate sepa-
rate output arrays of file descriptors,
and it avoids the problems of how to
deallocate the output arrays again. All
this really does, however, is shift the
burden from implementer to caller—
at a net efficiency gain of zero.

The Unix kernel also is not with-
out blemish and passes the buck oc-
casionally: many a programmer has
cursed the decision to allow some
system calls to be interrupted, forcing
programmers to deal explicitly with
EINTR and restart interrupted system
calls manually, instead of having the
kernel do this transparently.

Passing the buck can take many
different forms, the details of which
vary greatly from API to API. The key
questions for the designer are: Is there
anything I could reasonably do for the
caller I am not doing? If so, do I have
valid reasons for not doing it? Explic-
itly asking these questions makes de-
sign the result of a conscious process
and discourages “design by accident.”

APIs should be documented before
they are implemented. A big prob-
lem with API documentation is that
it is usually written after the API is
implemented, and often written by
the implementer. The implementer,
however, is mentally contaminated
by the implementation and will have
a tendency simply to write down what
he or she has done. This often leads to
incomplete documentation because
the implementer is too familiar with
the API and assumes that some things
are obvious when they are not. Worse,
it often leads to APIs that miss impor-
tant use cases entirely. On the other
hand, if the caller (not the imple-
menter) writes the documentation,
the caller can approach the problem
from a “this is what I need” perspec-
tive, unburdened by implementation
concerns. This makes it more likely
that the API addresses the needs of the
caller and prevents many design flaws
from arising in the first place.

Of course, the caller may ask for
something that turns out to be unrea-
sonable from an implementation per-
spective. Caller and implementer can
then iterate over the design until they
reach agreement. That way, neither
caller nor implementation concerns
are neglected.

Once documented and imple-

mented, the API should be tried out by
someone unfamiliar with it. Initially,
that person should check how much
of the API can be understood without
looking at the documentation. If an
API can be used without documen-
tation, chances are that it is good: a
self-documenting API is the best kind
of API there is. While test driving the
API and its documentation, the user
is likely to ask important “what if”
questions: What if the third param-
eter is null? Is that legal? What if I
want to wait indefinitely for a socket
to become ready? Can I do that? These
questions often pinpoint design flaws,
and a cross-check with the documen-
tation will confirm whether the ques-
tions have answers and whether the
answers are reasonable.

Make sure that documentation is
complete, particularly with respect
to error behavior. The behavior of an
API when things go wrong is as much
a part of the formal contract as when
things go right. Does the documenta-
tion say whether the API maintains
the strong exception guarantee? Does
it detail the state of out and in-out
parameters in case of an error? Does
it detail any side effects that may
linger after an error has occurred?
Does it provide enough information
for the caller to make sense of an er-
ror? (Throwing a DidntWork excep-
tion from all socket operations just
doesn’t cut it!) Programmers do need
to know how an API behaves when
something goes wrong, and they do
need to get detailed error information
they can process programmatically.
(Human-readable error messages are
nice for diagnostics and debugging,
but not nice if they are the only things
available—there is nothing worse
than having to write a parser for error
strings just so I can control the flow of
my program.)

Unit and system testing also have
an impact on APIs because they can
expose things that no one thought of
earlier. Test results can help improve
the documentation and, therefore, the
API. (Yes, the documentation is part of
the API.)

The worst person to write docu-
mentation is the implementer, and
the worst time to write documenta-
tion is after implementation. Doing
so greatly increases the chance that

With the
ever-growing
importance of
computing,
there are aPis
whose correct
functioning is
important almost
beyond description.

practice

may 2009 | vol. 52 | no. 5 | communications of the acm 55

interface, implementation, and docu-
mentation will all have problems.

Good APIs are ergonomic. Ergonom-
ics is a major field of study in its own
right, and probably one of the hardest
parts of API design to pin down. Much
has been written about this topic in
the form of style guides that define
naming conventions, code layout, doc-
umentation style, and so on. Beyond
mere style issues though, achieving
good ergonomics is hard because it
raises complex cognitive and psycho-
logical issues. Programmers are hu-
mans and are not created with cookie
cutters, so an API that seems fine to
one programmer can be perceived as
only so-so by another.

Especially for large and complex
APIs, a major part of ergonomics re-
lates to consistency. For example, an
API is easier to use if its functions al-
ways place parameters of a particular
type in the same order. Similarly, APIs
are easier to use if they establish nam-
ing themes that group related func-
tions together with a particular nam-
ing style. The same is true for APIs that
establish simple and uniform conven-
tions for related tasks and that use
uniform error handling.

Consistency is important because
not only does it make things easier
to use and memorize, but it also en-
ables transference of learning: having
learned a part of an API, the caller also
has learned much of the remainder of
the API and so experiences minimal
friction. Transference is important
not only within APIs but also across
APIs—the more concepts APIs can
adopt from each other, the easier it
becomes to master all of them. (The
Unix standard I/O library violates this
idea in a number of places. For exam-
ple, the read() and write() system
calls place the file descriptor first, but
the standard library I/O calls, such as
fgets() and fputs(), place the stream
pointer last, except for fscan()and
fprint(), which place it first. This
lack of parallelism is jarring to many
people.)

Good ergonomics and getting an
API to “feel” right require a lot of ex-
pertise because the designer has to
juggle numerous and often conflict-
ing demands. Finding the correct
trade-off among these demands is the
hallmark of good design.

grating existing functionality or about
repackaging it in some way. To put it
differently: API design today is much
more important than it was 20 years
ago, not only because we are designing
more APIs, but also because these APIs
tend to provide access to much richer
and more complex functionality.

Looking at the curriculum of many
universities, it seems that this shift in
emphasis has gone largely unnoticed.
In my days as an undergraduate, no
one ever bothered to explain how to
decide whether something should
be a return value or an out param-
eter, how to choose between raising
an exception and returning an error
code, or how to decide if it might be
appropriate for a function to modify
its arguments. Little seems to have
changed since then: my son, who is
currently working toward a software
engineering degree at the same uni-
versity where I earned my degree, tells
me that still no one bothers to explain
these things. Little wonder then that
we see so many poorly designed APIs:
it is not reasonable to expect program-
mers to be good at something they
have never been taught.

Yet, good API design, even though
complex, is something that can be
taught. If undergraduates can learn
how to write hash tables, they can also
learn when it is appropriate to throw
an exception as opposed to return-
ing an error code, and they can learn
to distinguish a poor API from a good
one. What is needed is recognition
of the importance of the topic; much
of the research and wisdom are avail-
able already—all we need to do is pass
them on.

Career Path. I am 49, and I write
code. Looking around me, I realize
how unusual this is: in my company,
all of my programming colleagues
are younger than I and, when I look
at former programming colleagues,
most of them no longer write code; in-
stead, they have moved on to different
positions (such as project manager)
or have left the industry entirely. I see
this trend everywhere in the software
industry: older programmers are rare,
quite often because no career path ex-
ists for them beyond a certain point.
I recall how much effort it took me
to resist a forced “promotion” into
a management position at a former

aPi change Requires
cultural change
I am convinced that it is possible to
do better when it comes to API design.
Apart from the nitty-gritty technical is-
sues, I believe that we need to address
a number of cultural issues to get on
top of the API problem. What we need
is not only technical wisdom, but also
a change in the way we teach and prac-
tice software engineering.

Education. Back in the late 1970s
and early 1980s, when I was cutting
my teeth as a programmer and getting
my degree, much of the emphasis in a
budding programmer’s education was
on data structures and algorithms.
They were the bread and butter of pro-
gramming, and a good understand-
ing of data structures such as lists,
balanced trees, and hash tables was
essential, as was a good understand-
ing of common algorithms and their
performance trade-offs. These were
also the days when system libraries
provided only the most basic func-
tions, such as simple I/O and string
manipulation; higher-level functions
such as bsearch() and qsort() were
the exception rather than the rule.
This meant that it was de rigueur for a
competent programmer to know how
to write various data structures and
manipulate them efficiently.

We have moved on considerably
since then. Virtually every major de-
velopment platform today comes with
libraries full of pre-canned data struc-
tures and algorithms. In fact, these
days, if I catch a programmer writing
a linked list, that person had better
have a very good reason for doing so
instead of using an implementation
provided by a system library.

Similarly, during this period, if I
wanted to create software, I had to
write pretty much everything from
scratch: if I needed encryption, I wrote
it from scratch; if I needed compres-
sion, I wrote it from scratch; if I needed
inter-process communication, I wrote
it from scratch. All this has changed
dramatically with the open source
movement. Today, open source is
available for almost every imaginable
kind of reusable functionality. As a re-
sult, the process of creating software
has changed considerably: instead of
creating functionality, much of today’s
software engineering is about inte-

56 communications of the acm | may 2009 | vol. 52 | no. 5

practice

company—I ended up staying a pro-
grammer, but was told that future pay
increases were pretty much out of the
question if I was unwilling to move
into management.

There is also a belief that older pro-
grammers “lose the edge” and don’t
cut it anymore. That belief is mistak-
en in my opinion; older programmers
may not burn as much midnight oil as
younger ones, but that’s not because
they are old, but because they get the
job done without having to stay up
past midnight.

This loss of older programmers
is unfortunate, particularly when it
comes to API design. While good API
design can be learned, there is no sub-
stitute for experience. Many good APIs
were created by programmers who had
to suffer under a bad one and then de-
cided to redo the job, but properly this
time. It takes time and a healthy dose of
“once burned, twice shy” to gather the
expertise that is necessary to do better.
Unfortunately, the industry trend is to
promote precisely its most experienced
people away from programming, just
when they could put their accumulated
expertise to good use.

Another trend is for companies to
promote their best programmers to
designer or system architect. Typically,
these programmers are farmed out to
various projects as consultants, with
the aim of ensuring that the project
takes off on the right track and avoids
mistakes it might make without the
wisdom of the consultants. The intent
of this practice is laudable, but the
outcome is usually sobering: because
the consultants are so valuable, having
given their advice, they are moved to
the next project long before implemen-
tation is finished, let alone testing and
delivery. By the time the consultants
have moved on, any problems with
their earlier sage advice are no longer
their problems, but the problems of a
project they have long since left behind.
In other words, the consultants never
get to live through the consequences of
their own design decisions, which is a
perfect way to breed them into incom-
petence. The way to keep designers
sharp and honest is to make them eat
their own dog food. Any process that
deprives designers of that feedback is
ultimately doomed to failure.

External Controls. Years ago, I was

working on a large development proj-
ect that, for contractual reasons, was
forced into an operating-system up-
grade during a critical phase shortly
before a delivery deadline. After the
upgrade, the previously working sys-
tem started behaving strangely and
occasionally produced random and
inexplicable failures. The process
of tracking down the problem took
nearly two days, during which a large
team of programmers was mostly twid-
dling its thumbs. Ultimately, the cause
turned out to be a change in the behav-
ior of awk’s index() function. Once
we identified the problem, the fix was
trivial—we simply installed the previ-
ous version of awk. The point is that a
minor change in the semantics of a mi-
nor part of an API had cost the project
thousands of dollars, and the change
was the result of a side effect of a pro-
grammer fixing an unrelated bug.

This anecdote hints at a problem
we will increasingly have to face in
the future. With the ever-growing im-
portance of computing, there are APIs
whose correct functioning is impor-
tant almost beyond description. For
example, consider the importance of
APIs such as the Unix system call inter-
face, the C library, Win32, or OpenSSL.
Any change in interface or semantics
of these APIs incurs an enormous eco-
nomic cost and can introduce vulner-
abilities. It is irresponsible to allow a
single company (let alone a single de-
veloper) to make changes to such criti-
cal APIs without external controls.

As an analogy, a building contractor
cannot simply try out a new concrete
mixture to see how well it performs. To
use a new concrete mixture, a lengthy
testing and approval process must be
followed, and failure to follow that
process incurs criminal penalties. At
least for mission-critical APIs, a simi-
lar process is necessary, as a matter of
self-defense: if a substantial fraction
of the world’s economy depends on
the safety and correct functioning of
certain APIs, it stands to reason that
any changes to these APIs should be
carefully monitored.

Whether such controls should take
the form of legislation and criminal
penalties is debatable. Legislation
would likely introduce an entirely new
set of problems, such as stifling in-
novation and making software more

expensive. (The ongoing legal battle
between Microsoft and the European
Union is a case in point.) I see a real
danger of just such a scenario occur-
ring. Up to now, we have been lucky,
and the damage caused by malware
such as worms has been relatively
minor. We won’t be lucky forever: the
first worm to exploit an API flaw to
wipe out more than 10% of the world’s
PCs would cause economic and hu-
man damage on such a scale that leg-
islators would be kicked into action. If
that were to happen, we would likely
swap one set of problems for another
one that is worse.

What are the alternatives to legisla-
tion? The open source community has
shown the way for many years: open
peer review of APIs and implementa-
tions has proven an extremely effec-
tive way to ferret out design flaws, in-
efficiencies, and security holes. This
process avoids the problems associ-
ated with legislation, catches many
flaws before an API is widely used, and
makes it more likely that, when a zero-
day defect is discovered, it is fixed and
a patch distributed promptly.

In the future, we will likely see a
combination of both tighter legislative
controls and more open peer review.
Finding the right balance between the
two is crucial to the future of comput-
ing and our economy. API design truly
matters—but we had better realize
it before events run away with things
and remove any choice.

 Related articles
 on queue.acm.org

The Rise and Fall of CORBA
Michi Henning
http://queue.acm.org/detail.cfm?id=1142044

APIs with an Appetite

(Kode Vicious column)
http://queue.acm.org/detail.cfm?id=1229903

From COM to Common
Greg Olsen
http://queue.acm.org/detail.cfm?id=1142043

Michi Henning (michi@zeroc.com) is chief scientist
of zeroC, where he’s working on the design and
implementation of Ice—zeroC’s next-generation
middleware. He previously worked on Corba as a
member of the object Management group’s architecture
board and as an orb implementer, consultant, and
trainer. With steve Vinoski, he wrote Advanced CORBA
Programming with C++, addison-Wesley, 1999.

© 2009 aCM 0001-0782/09/0500 $5.00

